
Tactical Behavior Composition

Evan C. Clark

Joel C. Eichelberger

Physical Science Laboratory
New Mexico State University

Las Cruces, NM 88003
575-496-9915

research@evanclark.net, eichel@psl.nmsu.edu

Jeffrey A. Smith

U.S. Army Research Laboratory
Survivability/Lethality Analysis Directorate

White Sands Missile Range, NM 88002-5513
575-678-1332

jeffrey.a.smith@us.army.mil

Keywords:
tactics description language, commander agent, tactical decision making

ABSTRACT: Behavior composition for computer generated forces is a technique that facilitates the creation and

validation of agent behavior. It refers to the practice of creating reusable primitives that can be combined to

construct new complex agent behaviors. Research in behavior composition has often focused on the use of

procedural primitives. This paper discusses a framework for commander agent behavior composition that includes

not only procedural primitives, but also those representing tactical concepts such as spatial relationships,

subordinate coordination, terrain analysis, firepower and mobility. These primitives give the domain expert the

ability to influence the manner in which tactical decisions are made. These primitives are elements of a tactics

description language called Tesla Using the Tesla language, a tactical behavior expert composes tactic templates

which can later be used by commander agents in course of action development and to solve tactical problems.

1. Introduction

Both military modeling and simulation and commercial
gaming require software agents that can solve tactical
problems. For both industries, realism and immersion
are enhanced when commander agents can dynamically
adapt to tactical challenges in a reasonable way.
However, because the current level of artificial
intelligence technology does not permit a software
agent to derive its tactical behavior from first
principles, some medium is required to facilitate the
transferral of tactical expertise from domain experts to
software agents.

One technique that has been developed to facilitate this
transferral of domain expertise is behavior
composition. This technique has been used to allow a
domain expert to directly configure the actions an
agent will undertake.

This paper describes an approach to agent behavior
configuration that extends the number of things a
domain expert can specify, giving him or her a greater
influence not only on what actions an agent performs
but also on how it performs them.

Section 2 motivates this approach by discussing the
advantages behavior composition systems already
enjoy. Section 3 gives a general overview of the Tesla
language and its use in agent configuration. Section 4
provides an example of using this approach. Section 5
describes Tesla's composition primitives. Section 6
discusses the implications of this approach on testing
and validation.

2. Background

In the context of commander agent configuration,
behavior composition refers to the practice of
combining reusable primitives to construct new
complex agent behaviors. What constitutes a primitive
may vary by echelon and from system to system, but in
all cases, a primitive refers to functionality
implemented in source code and packaged up so as to
be available to an editor application or scripting
engine.

Behavior composition is used as an alternative to
specifying all agent behavior in code, providing more
productive roles for software engineers and domain
experts alike. In such an arrangement, software
engineers develop behavior primitives rather than ad

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

75

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Tactical Behavior Composition

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Research Laboratory,Survivability/Lethality Analysis
Directorate,White Sands Missile Range,NM,88002-5513

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADA538937. Presented at the Proceedings of the Conference on Behavior Representation in
Modeling and Simulation (19th), held in Charleston, South Carolina, 21 - 24 March 2010.

14. ABSTRACT
Behavior composition for computer generated forces is a technique that facilitates the creation and
validation of agent behavior. It refers to the practice of creating reusable primitives that can be combined
to construct new complex agent behaviors. Research in behavior composition has often focused on the use
of procedural primitives. This paper discusses a framework for commander agent behavior composition
that includes not only procedural primitives, but also those representing tactical concepts such as spatial
relationships subordinate coordination, terrain analysis, firepower and mobility. These primitives give the
domain expert the ability to influence the manner in which tactical decisions are made. These primitives
are elements of a tactics description language called Tesla Using the Tesla language, a tactical behavior
expert composes tactic templates which can later be used by commander agents in course of action
development and to solve tactical problems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

hoc complex behaviors. It is the nature of these
primitives to be modular, encapsulated and reusable
(Fu, 2003) (Reece, 2004). Modular and encapsulated
code is easier to develop and verify, while code reuse
engenders an overall increase in productivity.
Engineer productivity is also increased when the time
spent soliciting requirements from domain experts is
limited to a finite set of primitives rather than a larger
set of more complex behaviors.

Domain expert productivity is also benefited by
behavior composition, which allows them to use a
language directly relevant to their domain. Further,
when equipped with an appropriate tool set, the
reliance on software developers is dramatically
reduced (Summers, 2004). This has the added benefit
of increasing the overall productivity of teams that are
limited by software engineer availability.

Perhaps the strongest argument in favor of composition
systems is that they facilitate model verification and
validation. They do this not only because access is
extended to those who lack training in software
development, but because when behaviors are
implemented in code the domain knowledge so
represented is mingled with and obscured by code that
fulfills other roles.

Behavior composition systems generally fall into one
of two broad categories. The first category,
knowledge-based systems (also called rule-based
systems or embedded expert systems), is characterized
by the use of some form of finite state machine (FSM).
Examples of this approach can be found in: Obst
(2001), Gilgenbach (2006), Fu (2003), Reece (2004),
and Kosecka (1997). States in the FSM represent
different things in different systems. They can
correspond to activities, goals, or behaviors, but in
each case, they devolve into actions taken by the unit
the agent commands. Typically, only one state may be
active at a time. Transitions between states are
governed by Boolean expressions whose fluents reflect
some bit of the agent's knowledge or some
environmental condition. Figure 1 shows an example
of FSM-based behavior composition for tactical
reasoning.

In order to be used in tactical decision making, there
must be a place for tactical concepts in any given
knowledge-based system. Some of these concepts,
such as time and the ordering of events and actions, are
expressed naturally by the arrangement of primitives in
an FSM. But other tactical concepts, such as spatial
relationships, subunit coordination, cover and
concealment, positional analysis and attrition, must be
captured in source code in either the actions associated
with states or in the fluents' evaluation functions.

Goal-based systems are another broad category into
which many behavior composition systems fall. In
these systems, a goal condition or optimization
function is specified external to the agent. The agent
performs a search of some kind to discover a sequence
of actions that meets its assigned objective. This
search occurs at execution time and gives the agent the
ability to dynamically adapt to its particular
circumstances. In goal-based systems, domain experts
ensure that plan inputs such as atomic actions and their
pre- and post-conditions are appropriate to the domain
rather than directly specifying action sequences or flow
charts. In this sense, the act of composition is shared
between the domain expert and an automated planner.
Zhang (2001) and Pittman (2008) are examples of this
approach.

As with knowledge-based systems, goal-based systems
also have the ability to aid in tactical reasoning. But as
with knowledge-based systems, apart from temporal
relationships and the ordering of events and actions,
tactical reasoning must be done in source code.

Both knowledge- and goal-based systems may be
termed procedural composition systems, because they
focus on agent actions and the manner in which
sequences of actions are chosen.

It is the purpose of this paper to assert that non-
procedural primitives can also be used in behavior
composition and that the gains in accessibility and
productivity made possible by procedural composition
systems can be extended by increasing the number and
kinds of primitives made available to domain experts.

3. Overview

This approach utilizes both procedural and non-
procedural composition. To do so, it uses a tactics
description language called Tesla to capture tactical
concepts and convey them from a human expert to a
software agent in a format that is accessible to both.

As depicted in Figure 2, the domain expert uses an
editor to create a tactic template. In this template is
encoded enough of a tactic's underlying concepts that
an agent can later use it to apply the tactic to its
particular situation.

Figure 3 shows a simple tactic template displayed in
the Tesla editor. In this tactic, the commander agent
directs a single subordinate unit to move to a
destination while avoiding observation by all known
enemies.

The Tesla language is part graphical and part textual.
The graphical part is the sketch view which

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

76

Figure 1: Tactical behavior in a knowledge-based composition system (Gilgenbach, 2006)

Figure 2: Tesla use case

Figure 3: Simple tactic template

corresponds roughly to a course of action sketch.
Found in the sketch view are 1) all entities (including
relevant control measures) that take part in the tactic
and 2) the constraints that define how entities and
control measures may be converted from abstract
concepts into instances of a particular situation.

The textual part of a template is the execution matrix.
As with the sketch view, its semantics and syntax are
borrowed from military course of action development
(FM 3-90, 2001). Both parts of the language are
described in more detail below.

3.1 Nominals

One of the principal elements of the Tesla language is
the nominal. In grammar, a nominal is a noun phrase.
In the Tesla language, a nominal is a unit, location or
object on the battlefield.

The example in figure 3 contains four nominals.
Starting on the left and proceeding in a clockwise
manner, they are: a subunit (A), a generic direction of
attack (DA1), a checkpoint (CP1) and an enemy unit
(ENY1).

Nominal icons come mainly from US military
symbology (FM 1-02, 2004). Note that the subunit and
enemy unit symbols do not have echelon designators,
because in a template they can refer to any echelon.

3.2 Constraints

In the Tesla language, constraints modify nominals. In
this respect, they serve as adjective phrases indicating
what kind of object the nominal should be. Above the
sketch view in figure 3 is the constraint glyph bar.

Glyph Bar

Execution Matrix

Sketch View

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

77

Constraints are chosen from this glyph bar, configured
and added to the nominals they modify.

The template in figure 3 contains a single constraint.
This constraint points from ENY1 to DA1. It is read to
mean, "Constrain DA1 such that it is concealed from
all enemies identified as belonging to ENY1."

The natural language expression of a constraint can
sometimes be ambiguous. To remove this ambiguity,
each constraint has one or more associated location

metrics. A location metric contains the algorithmic
interpretation of the constraint that the domain expert
wants to use in the tactic. The concealment constraint
from figure 3, for example, can be alternately
interpreted as meaning the absence of optical line of
sight or as referring to an estimated probability of
detection being below some threshold. Each
interpretation has a corresponding location metric that
can be chosen for the constraint. Other interpretations
would also be possible.

3.3 Execution matrix

The Tesla execution matrix is conceptually similar to
the execution matrices used in military course of action
development. It contains the procedural parts of the
tactic template. In it, each subunit has a column, and
each phase in the course of action has a row. Every
cell in the execution matrix contains instructions for
that column's subunit. Cells in a row are executed
simultaneously. In the Tesla language, instructions are
composed of a task word and some number of
modifying phrases. These modifying phrases are task
word specific and generally relate to one or more
nominals from the sketch view.

The execution matrix from figure 3 has a single subunit
and a single phase. Its instruction has the task word,
Advance, with the modifying phrases, on DA1 and to

CP1.

3.4 Resolution

Template resolution is the process by which a template
is applied to the agent's particular situation. It consists
of mapping each nominal to an appropriate counterpart
in the agent's environment. In the template from figure
3, for example, subunit A would be mapped to one or
more of the agent's subordinates; DA1 would be
mapped to a concealed route; CP1 would be mapped to
a location; and ENY1 would be mapped to a group of
known or suspected hostile units.

In order to ensure that a proper mapping is found, the
domain expert assigns and configures a so-called
nominal resolver to each nominal in the template.

Each type of nominal has one or more nominal
resolvers to choose from, and each nominal resolver is
responsible for making sure that a mapping is found
that obeys each of the constraints placed on the
nominal.

Once each nominal has been resolved, the instructions
in the execution matrix refer to concrete locations and
objects rather than abstractions. At this stage, these
instructions can be used to generate maneuver and fire
orders for subordinates.

4. Example Tactic

To illustrate how a tactic template works, this section
examines an implementation of the fix-flank tactic. In
this tactic, a force is divided into fixing and flanking
elements. The fixing element engages the enemy unit
and seeks to pin it in place. The flanking element takes
a concealed route to a position of advantage from
which it can surprise and flank the enemy. Parts of this
template are shown in figures 4 and 5.

Figure 4: Fix-Flank tactic template

In the fix-flank template, subunit A is the fixing
element. It moves to ABF1, an attack by fire position,
from which it can engage ENY1. In order for the
solver to select a suitable location for ABF1, five
constraints are supplied that indicate the properties that

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

78

ABF1 must have in order to play its role as a fixing
position in this tactic. In the Tesla editor, when a
nominal is selected, its constraints become visible.
Figure 4 shows the fix-flank template with ABF1
selected. Starting above ABF1 and proceeding in a
clockwise direction, its constraints are interpreted as
meaning:

 A unit at ABF1 should have cover from
ENY1.

 A unit occupying ABF1 should be able to see
ENY1.

 ABF1 should be roughly between subunit A's
starting position and ENY1.

 ABF1 should be somewhat near subunit A's
starting position.

 ABF1 should be on trafficable terrain.

The other nominals from this template also have
constraints specified in a similar manner.

Figure 5 shows the user interface for the nominal
resolver that was chosen for ABF1. This type of
nominal resolver is called a location scorer resolver
because it uses the constraints' location metrics to score
and rank candidate locations. In the location scorer
resolver, the domain expert chooses whether to use
constraints as a basis for excluding locations as
candidates or to use them as contributing to a location's
score. As seen in the first two rows of figure 5, only
locations with line of sight to all of ENY1 and at least
some cover from ENY1 are considered as candidates.

Figure 5: Location scorer resolver configuring ABF1

Location metrics create values that range from zero to
one, making them suitable for nominal resolvers that
use fuzzy logic. This property also makes it easy to
visualize how location metrics operate. Figure 7 shows
heat maps for the five location metrics used by the
ABF1 nominal resolver.

To apply the template to a situation, the Tesla solver
iterates over each nominal and invokes its nominal
resolver. The order of resolution matters, since the
outcome of one mapping can be used as an input into a

subsequent nominal resolver's location metric. In the
fix-flank example, A, B and ENY1 are template inputs,
meaning that in order to use the template, the agent
must supply mappings for these three nominals. The
other nominals, ABF1, DA1, CP1 and DA2 are all
resolved using constraints, location metrics and
nominal resolvers as configured by the template
developer.

Figure 6 shows the fix-flank template resolved in two
different situations. The top situation is the same as
the one from figure 7.

Figure 6: Two resolutions of the fix-flank tactic

5. Tesla Composition Primitives

Each type of behavior primitive in a composition
system represents a kind of functionality available to
the domain expert for manipulation and validation.
The behavior primitive types available indicate the
points where the system is easily extensible.

This section discusses some of the composition
primitives available to a domain expert in Tesla.

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

79

Figure 7: Location metrics used in the fix-flank example. From left to right, they are: Percent visible, Amount cover,

Fraction of max speed, Relative proximity and Amount between. The last panel shows the composite scores as

calculated by the location scorer resolver. In each panel, green indicates a metric value of one, while red indicates a

metric value of zero. In the last panel, magenta indicates a location that has been filtered out and not considered as a

candidate.

5.1 Nominals

The number of kinds of battlefield objects that can be
represented by the Tesla language is increased by
adding more nominals. Nominal types currently
supported in the language are:
 subunits i.e. a subordinate of the commander agent
 enemy units
 locations - e.g. point target, support by fire

position, point of interest
 line segments - e.g. linear target, lane
 segmented lines - e.g. unit border, phase line
 routes - e.g. avenue of approach, direction of

attack
 areas - e.g. objective, free fire zone

5.2 Constraints and location metrics

Constraints and location metrics represent the most
basic tactical concepts that can be expressed in the
Tesla language. They provide the building blocks for
terrain and positional analysis and reasoning over
firepower, mobility, communications and sensing. As
domain experts develop templates for which existing
constraints and locations metrics do not suffice, new
ones can be requested of and implemented by a
software engineering team.

5.3 Nominal resolvers

The algorithms found in nominal resolvers are
themselves behavior primitives. Nominal resolvers
currently exist for location selection, enemy
classification, route planning and template input
handling. More can be built and added to the
framework as necessary.

5.4 Verbs and verb modifiers

Similar to other systems, these procedural primitives
map to actions that must be individually implemented
in source code. But these actions should be much
simpler to implement because they are for individual
subordinates and not for the unit as a whole. Subunit
coordination is done in the template editor rather than
by a software engineer.

5.5 Expressivity

The Tesla language allows for the representation of
sophisticated tactical concepts. Its primitives can be
used to design coordinated attacks, plan ambushes,
identify kill sacks and areas of overlapping fire, trace
infiltration routes, find overwatch positions, plan
defensive positions and so forth.

A reverse slope defense is one that keeps the defender
concealed from the attacker until the attacker has
approached to close range (such as by defending the
reverse side of a hill). This allows the defender to
neutralize any weapon range overmatch the attacker
might have by forcing the engagement to occur at close
range. This concept can be included in a tactic by using
and giving proper weights to direct fire constraints.
Conversely, an agent can be configured to capitalize on
a weapon range overmatch by applying different
weights to those same constraints.

Some tactical concepts have fine distinctions that can
be difficult for a software agent to make. For example,
three different tasks, attack, suppress and fix, all
involve seeking advantageous terrain and engaging the
enemy. All three are successful if the enemy is
destroyed, but the manner in which the tasks are

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

80

executed is sometimes different. For attack, the desired
effect is the destruction of the enemy. For suppress, the
desired effect is to make enemy fires less effective. For
fix, the desired effect is to prevent enemy movement.
Because fix and suppress tasks have more relaxed
goals, troops are permitted a more defensive posture
when executing these tasks. These distinctions between
the attack, suppress and fix tasks can be realized
through judicious use of direct fire and line of sight
constraints on ABF and SBF nominals.

The expressivity of the Tesla language gives
commander agents the ability to reason over
sophisticated tactical concepts. This gives an agent the
ability to interpret changes to its tactical situation and
dynmically adapt when necessary. This adaptability
increases model realism. It also makes scenario
devleopment less time consuming, because it decreases
the number of eventualities that have to be explicitly
scripted for.

6. Iterative Refinement and Behavior

Validation

Figure 8 shows the Tesla editor application. It is
divided into a template editor and a situation editor.
The template editor allows the user to create and view
tactic templates. The situation edtor is where the
template is tested. It allows the user to create a number
of situations against which to test the template.

Figure 8: Tesla Editor

The ability to quickly test a template has a number of
significant implications. First, it allows template
development to be a process of iterative refinement.
The domain expert creates a template and a situation
and then invokes the solver to see how it interprets the
template. If there are unexpected results, debugging is
facilitated by overlays showing the contributions of
individual parts of the template. These overlays, such

as the heat maps from figure 7, are displayed in the
situation editor. As problems are worked out, the
domain expert creates more situations and tests the
template against them as well. The process continues
until the user is confident that the template is flexible
enough to be applicable in many situations.

This same functionality is useful in behavior
validation. Rather than waiting to validate a template
until the agent can use it in a fully configured
simulation, the validating authority can see how a
tactic is used in a number of situations. If applicable,
the template can be checked for validity at different
echelons as well. These situations are saved with the
template library and can be invoked again later,
allowing the template library to be separately validated
at any time

The easy and full access to this aspect of agent
behavior is a significant aid to the validation process.

7. Conclusion

Although the Tesla language shares similarities with
other composition systems, it is qualitatively different
from many of them. In the military context, the
decisions of commanders are more often manifest
through communication and the actions of their
subordinates than through their own shooting, moving
and sensing. For a commander agent to develop a
course of action for its subordinates requires it to
reason about what it knows about friendly and enemy
force positions, composition and capability. As a tool
for commander agent configuration, Tesla encodes
formulae for the deployment of maneuver forces rather
than encoding procedures for equipment operation.

The Tesla language, editor and solver constitute part of
a kind of knowledge-based system. It does not
compete with automated planners or systems that use
FSMs, since they solve different kinds of problems.
Procedural composition systems are primarily
concerned with determining what to do, whereas this
approach seeks to identify how something should be
done. Rather than competing with procedural
composition systems, this approach should be viewed
as complementary. When equipped with the
appropriate metadata, these templates can serve as
robust primitives in a higher-level composition system.
In particular, they can provide a mechanism for
managing subordinate coordination, which can be
problematic for a purely procedural system.

The approach described in this paper aids in the
specification of commander agent behavior. It is
offered as a way to extend the benefits of composition
systems to more functionality than is exposed in purely

Situation Editor

Template Editor

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

81

procedural systems. Doing so facilitates validation and
verification by giving domain experts more direct
access to agent behavior, enables a more cost effective
division of labor between domain experts and software
engineers and provides a highly extensible framework
for configuring tactical agent behavior.

8. References

Reece, D., McCormack, R., and Zhang, J., (2004). A

Case-Based Reasoning Tool for Composing
Behaviors for Computer Generated Forces. In

Proceedings of Behavior Representation in

Modeling and Simulation.
Fu, D., Houlette, R., and Jensen, R., (2003). A Visual

Environment for Rapid Behavior Definition. In

Proceedings of Behavior Representation in

Modeling and Simulation.
Gilgenbach, M., McIntosh, T., "A Flexible AI System

through Behavior Compositing," AI Game

Programming Wisdom 3, pp 251-264, Charles
River Media, 2006.

Obst, O., (2001). Specifying Rational Agents with
Statecharts and Utility Functions.

Howden, N., Curmi, J., Heinze, C., Goss, S., and
Murphey, G., (2003). Operational Knowledge
Representation: Behavior Capture Modelling and
Verification. In Proceedings of the Eighth

International Conference on Simulation

Technology and Training.
Lötzsch, M., Bach, J., Burkhard H., Jüngel, M..

(2004). Designing Agent Behavior with the
Extensible Agent Behavior Specification
Language XABSL. In Proceedings 7th

International Workshop on RoboCup, 114-124.
Kosecka, J., Christensen, H., (1997). Experiments in

Behavior Composition. Journal of Robotics and

Autonomous Systems, vol. 19,287-298.
Zhang, Y., Biggers, K., Sheetal, R., Sepulvado, D.,

Yen, J., Loerger, T., (2001). A distributed
intelligent agent architecture for simulating
aggregate-level behavior and interactions on the
battlefield. In Proceedings 5th Multi-Conference

on Systemics, Cybemetics, and Informatics, 58-

63.
Pittman, D., "Command Hierarchies Using Goal-

Oriented Action Planning," AI Game

Programming Wisdom 4, pp 383-391, Charles
River Media, 2008.

Summers, J., McLaren, M., Aha, D., (2004). Towards
Applying Case-Based Reasoning to Composable
Behavior Modeling. In Proceedings of Behavior

Representation in Modeling and Simulation.
Department of the Army. (2001). Field Manual 3-90,

Tactics. Washington, D.C..

Department of the Army. (2004). Field Manual 1-02,

Operational Terms and Graphics. Washington,
D.C..

Author Biographies

EVAN CLARK is a software engineer at the Physical
Science Laboratory of New Mexico State University.
He works as the simulation subject matter expert for
the System of Systems Survivability Simulation (S4).
He graduated from Brigham Young University with a
B.S. in Electrical Engineering in 1997. He received a
M.S. in Computer Science from New Mexico State
University in 2006 and a Ph.D. in 2009. His research
interests include agent modeling, decision theory,
military modeling & simulation, human vision and
audition, computational geometry and visual
languages.

JEFFREY SMITH is an Electronics Engineer for the
Survivability\Lethality Analysis Directorate (SLAD) of
the Army Research Laboratory. He is the lead
engineer for developing and fielding a Systems of
Systems Analysis capability for SLAD and a provider
of survivability, lethality and vulnerability analysis
expertise to the System of Systems Survivability
Simulation (S4) agent based model, a core component
of this capability. He graduated from New Mexico
State University with a B.S. (1984) degree in Electrical
Engineering. He has an M.S. (1998) and a Ph.D.
(2004) in Industrial Engineering (Operations
Research/Stochastic Systems) and a minor in
Mathematics (Statistics/Probability Theory). He
entered Federal Service in 1978 as a Co-op engineer,
and continued as an Electronics Engineer with the
completion of his B.S.E.E. 1984. He has worked his
entire career with the U.S. Army in the area of close
combat weapons, assessing the effectiveness and
hardness of various weapons systems, and the
survivability of numerous developmental and fielded
combat platforms. He has a lifelong interest in military
history and combat simulations.

JOEL EICHELBERGER is the communications
subject matter expert and lead communications model
developer at the Physical Science Laboratory of New
Mexico State University. In 2001, he earned a B.A. in
Computer Science and Business from Northwood
University, where he was the University’s Network
Administrator. In 2009, while working at NMSU, he
earned his M.B.A.. He has interests in military
communications systems and the impact of information
on the battlefield, with a focus on the modeling and
simulation of said systems.

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

82

